Convergence in $$s_{2}$$ s 2 -quasicontinuous posets
نویسندگان
چکیده
منابع مشابه
NETS AND SEPARATED S-POSETS
Nets, useful topological tools, used to generalize certainconcepts that may only be general enough in the context of metricspaces. In this work we introduce this concept in an $S$-poset, aposet with an action of a posemigroup $S$ on it whichis a very useful structure in computer sciences and interestingfor mathematicians, and give the the concept of $S$-net. Using $S$-nets and itsconvergency we...
متن کاملSubpullbacks and coproducts of $S$-posets
In 2001, S. Bulman-Fleming et al. initiated the study of three flatness properties (weakly kernel flat, principally weakly kernel flat, translation kernel flat) of right acts $A_{S}$ over a monoid $S$ that can be described by means of when the functor $A_{S} otimes -$ preserves pullbacks. In this paper, we extend these results to $S$-posets and present equivalent descriptions of weakly kernel p...
متن کاملOrder dense injectivity of $S$-posets
In this paper, the notion of injectivity with respect to order dense embeddings in the category of $S$-posets, posets with a monotone action of a pomonoid $S$ on them, is studied. We give a criterion, like the Baer condition for injectivity of modules, or Skornjakov criterion for injectivity of $S$-sets, for the order dense injectivity. Also, we consider such injectivit...
متن کاملCOGENERATOR AND SUBDIRECTLY IRREDUCIBLE IN THE CATEGORY OF S-POSETS
In this paper we study the notions of cogenerator and subdirectlyirreducible in the category of S-poset. First we give somenecessary and sufficient conditions for a cogenerator $S$-posets.Then we see that under some conditions, regular injectivityimplies generator and cogenerator. Recalling Birkhoff'sRepresentation Theorem for algebra, we study subdirectlyirreducible S-posets and give this theo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SpringerPlus
سال: 2016
ISSN: 2193-1801
DOI: 10.1186/s40064-016-1873-6